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Novel geometrical chemical descriptors have been derived on the basis of the computational geometry of
protein-ligand interfaces and Pauling atomic electronegativities (EN). Delaunay tessellation has been applied
to a diverse set of 517 X-ray characterized protein-ligand complexes yielding a unique collection of interfacial
nearest neighbor atomic quadruplets for each complex. Each quadruplet composition was characterized by
a single descriptor calculated as the sum of the EN values for the four participating atom types. We termed
these simple descriptors generated from atomic EN values and derived with the Delaunay Tessellation the
ENTess descriptors and used them in the variable selectionk-nearest neighbor quantitative structure-binding
affinity relationship (QSBR) studies of 264 diverse protein-ligand complexes with known binding constants.
Twenty-four complexes with chemically dissimilar ligands were set aside as an independent validation set,
and the remaining dataset of 240 complexes was divided into multiple training and test sets. The best models
were characterized by the leave-one-out cross-validated correlation coefficientq2 as high as 0.66 for the
training set and the correlation coefficientR2 as high as 0.83 for the test set. The high predictive power of
these models was confirmed independently by applying them to the validation set of 24 complexes yielding
R2 as high as 0.85. We conclude that QSBR models built with the ENTess descriptors can be instrumental
for predicting the binding affinity of receptor-ligand complexes.

Introduction

The prediction of the protein-ligand binding affinity is a
critical component of computational drug discovery. Rapid
growth of the Protein Data Bank1 provides opportunities to
enhance current protocols for molecular docking and scoring,
which are at the core of structure-based drug design2-5 and hit
identification.6-8 Accurate estimation of binding affinities, or
at least correct relative ranking of different ligands, has proven
to be a difficult task due to multiple energetic and entropic
factors that must be accounted for.9,10 The limited accuracy of
current scoring functions is one of the problems hampering the
broad application of docking and virtual screening in lead
optimization.

Many scoring functions have been developed over the years.
Force field scoring is based on the classical molecular force
field (such as AMBER,11 CHARMM,12 MMFF9413) to compute
nonbonded interaction terms between the receptor and ligand
atoms. Additional empirical terms taking into account the effects
of solvation and entropy have also been considered.14 The
second family of methods includes so-called empirical scoring
functions such as LUDI,15 VALIDATE, 16 and ChemScore.17

They are based on the concept that the receptor-ligand
interaction energy can be approximated by a multivariate
regression of different parameters, e.g., the number of hydrogen
bonds, lipophilicity, ionic interactions, entropy penalties. Re-
cently, a third family of methods, based on statistical scoring
functions (e.g., DrugScore,18 SMoG,19,20PMF,21 BLEEP,22 and
distance dependent atom pair descriptors23), has become popular.
These methods employ the statistical analysis of known recep-
tor-ligand complexes to define the pairwise interatomic pseudo-
potential of protein-ligand interaction. After the calibration on

the training set of complexes, these scoring functions are
validated by predicting binding affinities for the complexes of
the test sets.

Since the force field based scoring functions are too com-
putationally demanding to allow for efficient virtual screening
of large databases,24 their application in screening is usually
limited to small datasets. Of the three approaches outlined above,
empirical scoring functions are the most computationally
efficient and therefore most widely used in current docking
programs.

Knowledge-based scoring functions are based on the com-
positional analysis of protein-ligand complexes. They derive
their origin from protein fold recognition studies in the 1970s.25

Today the growing sources1,26-28 of structural information on
protein-ligand complexes provide great advantages for the
continuing development and enhancement of statistical scoring
functions. Studies have shown that in many cases knowledge-
based scoring functions surpass both force field based and
empirical scoring functions in predicting correct binding modes
and affinities of the ligands. At the same time, they are fast,
accurate, and at least comparable to empirical scoring functions
in the efficiency of virtual screening of large databases and
combinatorial lead design.2-4,8,18,20-22,29

All methodologies discussed above rely on the availability
of structural information about protein-ligand complexes and
are classified as structure-based drug design approaches. In
contrast, ligand-based approaches rely only on the experimental
structure-activity relationships for ligands only. Quantitative
structure-activity relationship (QSAR)30 methods are typically
used to find correlations between ligands’ binding affinities and
their chemical descriptors. Some 3D-QSAR methods such as
comparative molecular field analysis (CoMFA) have been
developed to find correlation between binding affinities and
energetic fields surrounding small molecules, such as steric,
electrostatic, hydrophobic.31-33 The “fields” are thought to
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simulate the active site environment but they actually do not
consider the receptor geometry or the structural information of
the active site (although CoMFA does provide an option to use
active site atoms as opposed to a “probe” atom to sample the
interaction fields). Several so-called receptor-dependent quan-
titative structure-activity relationship (RD-QSAR) methods
have been developed that rely on the receptor structure informa-
tion to calculate descriptors.23,34 Holloway and co-workers35

have derived a highly significant 3D-QSAR model for HIV-1
protease and its peptidomimetic inhibitors and used it to predict
binding affinities for newly designed ligands. Several other
authors16,36,37have developed new methodologies by considering
all of the enthalpic and entropic contributions as well as
solvation effects of the receptor-ligand interactions and treated
them as independent variables in the RD-QSAR development.

In this paper, we present a hybrid methodology to predict
the binding affinities for a highly diverse dataset of protein-
ligand complexes using concepts from both structure-based and
ligand-based approaches. It is based on a four-body statistical
scoring function derived by combined application of the
Delaunay tessellation of protein-ligand complexes and the
definition of chemical atom types using the fundamental
chemical concept of atomic electronegativity. As described in
our previous publications,38-42 Delaunay tessellation naturally
partitions a tertiary structure of a protein or a protein-ligand
complex into an aggregate of space-filling, irregular tetrahedra,
or simplices; the vertices of the simplices are quadruplets of
nearest neighbor residues or atoms, respectively (Figure 1).
Thus, Delaunay tessellation reduces a complex three-dimen-
sional structure to a collection of explicit, elementary atomic
quadruplet structural motifs. Four vertices (atoms) of a simplex
form a particular quadruplet composition and the chemical
properties of the atom types characterize the type of the
tetrahedron.

Atom types can be defined in a number of ways.16,20-22,43 In
general, atoms can be classified into polar and nonpolar carbon
atoms, HBA (hydrogen-bond acceptor) and HBD (hydrogen-
bond donor), X (halogens), M (metals), cations, anions, and
hydrophobic atoms. Herein we present an unconventional way
to define atom types using a scale of Pauling electronegativities
(EN). To the best of our knowledge, EN has never been used
previously to define atom types in a statistical scoring function.
We apply atomic EN values to generate descriptors for all
frequently observed quadruplet atomic compositions at the
interfaces of 517 diverse X-ray characterized protein-ligand
complexes. The descriptor value for a specific quadruplet

composition in a complex is obtained as a sum of the EN values
for the composing atoms. Since these descriptors are based on
the constructs from computational geometry (Delaunay tessel-
lation) combined with the fundamental chemical property of
composing atom types such as Pauling EN, we term them
geometrical chemicalor ENTess descriptors. Herein, we report
on the use of the ENTess descriptors as independent variables
in multivariate correlation analysis of the experimental dataset
of 264 diverse protein-ligand complexes with known binding
constants. Following the protocols for developing validated and
predictive QSAR models established in the course of our
previous studies,44-47 we have divided these datasets into the
training, test, and independent validation sets. We report
statistically significant quantitative structure-binding affinity
relationships (QSBR) models capable of predicting the binding
affinities of ligands in the independent validation set with the
R2 of 0.85.

Materials and Methods

1. Datasets.To develop the ENTess descriptors, we have used
two datasets. The first dataset included 517 protein-ligand
complexes with high resolution (below 3.0 Å) X-ray crystal
structures.2,4,16,18,20-22,28,48-50 This dataset was used to generate the
statistics of quadruplet atomic compositions resulting from Delaunay
tessellation of protein-ligand interfaces as discussed below. The
second dataset was a subset of the first dataset. It included 264
protein-ligand complexes with known binding affinities (pKd)
ranging between 1.48 (1XLI) and 13.96 (7CPA) log units of molar
concentration. The molecular weight of ligands ranged from tens
to thousands of daltons. The data were collected from recent
publications.2,4,16,18,20-22,28,48-50 All of the structures in the datasets
were prepared for the subsequent analysis as follows: hydrogen
atoms and water molecules were removed; ligands were extracted
from the protein-ligand complex structures using SYBYL 6.9 and
the ligand structures were fixed according to Relibase, which is an
online ligand-receptor structure database.51 We followed the routine
that was used by Gohlke and co-workers in their DrugScore
development.18

2. Structural and Functional Diversity Analysis of the 264
Complexes.To evaluate the structural and functional diversity of
this dataset, we have classified the 264 complexes into different
families based on their structural and functional annotations using
the SWISS-PROT/PDB cross-referencing system.52 According to
this system, each PDB entry is cross-referenced with the SWISS-
PROT code, primary gene name (gene expressing that protein), and
its source or species of origin. If two proteins have the same primary
gene names, they will have very high sequence identity and their
structures will be very similar. The family associations of all training
set complexes are shown in Table 1. In those cases where no cross-
referenced information was available (e.g., PDB entries 1dbb, 1mcf,
etc.) the complexes were placed in a group called “MISC”.

Based on the SWISS-PROT annotation, the 264 complexes were
classified into 71 families reflecting the high functional and
structural diversity of this dataset. Some families had multiple
members and some had only one member. All of the protein
structures within one family were similar, but the ligand structures
were different; for different families both protein and ligand
structures were dissimilar. We have found that 14 PDB entries were
not annotated in the SWISS-PROT/PDB cross-referencing system
and they have been classified into the “MISC” family.

3. Atom Type Definitions. To develop simple yet robust
chemical geometrical descriptors, we sought some fundamental
atomic property that could be attributed to any chemical atom type
of either receptor or ligand and could be useful in describing
interatomic interactions at the protein-ligand interface. We decided
to use the Pauling electronegativity53 as a parameter to characterize
atom types. According to the chemical potential equalization
principle as described by Itskowitz and Berkowitz,54 electronega-
tivity is the first-order term in the energy function of molecules:

Figure 1. Illustration of Voronoi/Delaunay tessellation in 2D space
(Voronoi polyhedra are represented by dashed line and Delaunay
simplices by solid line). For the collection of points with 3D coordinates,
such as atoms of a protein-ligand complex, Delaunay simplices are
tetrahedra whose vertexes correspond to the atoms.
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whereE is the energy of the molecule,µa is the electronegativity
of atoma, Qa is the partial charge on atoma, andη̃ is the hardness
kernel. E0 is the collection of terms independent ofQa, so
electronegativity is the main factor determining the atom’s polarity
and its ability to form a hydrogen bond. For example, oxygen has
high electronegativity and high ability to form a hydrogen bond
and it is a polar atom type in most cases. Thus, electronegativity
could be used to describe the interactions between protein and ligand
atoms. Hall et al. have introduced electrotopological state (E-state)
indices, which are indirectly related to electronegativity, and
successfully used them in QSAR studies of many datasets.55

Recently Zefirov et al. used an electronegativity equalization scheme
as a source of electronic descriptors to study some types of chemical
reactivity and obtained good models for thermodynamic and kinetic
data such as proton affinity and Taft’s inductiveσ* constants.56

To collect the most representative statistics for possible ligand
atom types, we relied on chemical databases of biologically active
organic compounds from the National Cancer Institute (NCI). The
first database contains 237 771 compounds57 and the second one
includes 30 000 compounds tested against 60 human cancer cell
lines.58 If an atom type occurred in more than 5000 out of the
237 771 compounds in the first NCI database and in more than
1500 compounds out of 30 000 compounds in the NCI cancer
database, we classified it as an independent atom type. For example,
O (EN ) 3.4), N (EN) 3.0), C (EN) 2.5), and S (EN) 2.4)
were classified into independent atom types according to their

electronegativity values and their high occurrence in the databases.
Although halogens (F, Cl, Br, and I) and P are also important atom
types, since each of them occurs less than 5000 times in the NCI
database and less than 1500 times in the NCI cancer database, they
were classified into the same atom type X [P has a very similar
electronegativity value to that of halogens, except for F (between
2.0 and 2.4)]. Similarly, all metal atoms have electronegativity
values within 0.6-1.6 and, along with some other rare atom types,
were classified into the same atom type M. Atom type definition
for proteins is relatively easier, since there are only four atom types,
C, N, O, and S, that occur in natural amino acids.

To distinguish ligand vs protein atoms, we have classified the
protein and ligand C, N, O, and S as different atom types. Hydrogen
atoms were not considered since usually they are not defined
explicitly in the X-ray structures. Thus, we have defined four atom
types for proteins and six atom types for ligands. In total, there
were 554 possible types of interfacial atomic quadruplet composi-
tions, and each of them gave rise to an independent variable (a
sum of EN values for composing atom types) for our QSBR studies.
Atom type definitions are summarized in Table 2.

4. Delaunay Tessellation of the Protein-Ligand Interfaces.
We have developed programs for the protein-ligand complex
tessellation based on thennsort method.59 The protein-ligand
interfaces were defined by tetrahedra formed by both protein and
ligand atoms. A distance cutoff value of 8 Å was used to exclude
Delaunay simplices with long edges (exceeding the physically
meaningful interaction distance) between vertices. As shown in
Figure 2, we have distinguished three classes of interfacial
tetrahedra, i.e., RRRL, RRLL, and RLLL, where each R and L
corresponds to a receptor and ligand atom, respectively. For each

Table 1. 264 Protein-Ligand Complexes and the Family Classification Based on Primary Gene Name

family
name

no. of
complexes PDB codes of the complexes

family
name

no. of
complexes PDB codes of the complexes

SUBI 1 1sbp TPIS 5 2ypi 6tim 4tim 7tim 5tim
ACON 3 8acn 7acn 5acn FABI 1 2ifb
6PGD 1 1pgp CAT3 3 3cla 1cla 4cla
PHHY 2 1phh 2phh KAD3 1 2ak3
F16P 3 1fbc 1fbf 1fbp HEMA 1 4hmg
IDH 2 5icd 8icd RNT1 3 6rnt 1rnt 2rnt
TRY1 9 1ppc 1pph 3ptb 1tng 1tnh 1tni 1tnj LDHA 2 1ldm 9ldt

1tnk 1tnl LDHB 1 5ldh
FKB1 1 1fkf OPPA 27 1b05 1b0h 1b1h 1b32 1jet 1jeu 1jev
SAV 1 1stp 1b2h 1b40 1b46 1b3f 1b3g 1b3h 1b3l
MDHC 1 4mdh 1b51 1b58 1b4h 1b4z 1b5h 1b5i 1b5j
DAPB 1 1dih 1b6h 1b7h 1b9j 1qka 1qkb 2olb
RBSB 1 2dri THRB 4 1etr 1ets 1ett 1tmt
RBL2 2 1rus 9rub PRLA 6 8lpr 3lpr 6lpr 9lpr 7lpr 5lpr
TYSY 2 2tsc 1tlc MM07 3 1mmp 1mmq 1mmr
PENP 7 1ppk 1ppl 1ppm 1apt 1apu 1apv 1apw MM08 3 1mmb 1mnc 1jao
RENI 1 1rne PNPH 1 1ulb
CARP 13 6apr 4er1 4er2 4er4 1eed 2er0 2er6 CATA 1 7cat

2er7 2er9 5er2 3er3 1epo 1epp LYCV 10 181l 182l 1nhb 183l 184l 185l 186l
PYRB 1 8atc 187l 1l83 188l
XYLA 6 4xia 1xli 2xim 2xis 5xia 8xia GSHR 1 4gr1
THER 10 2tmn 5tln 5tmn 3tmn 6tmn 1tlp 1tmn CATD 1 1lyb

4tln 4tmn 7tln AATM 1 9aat
AMYG 1 1dog NRAM 3 1nnb 1nsc 1nsd
PMG1 1 3pgm GLNA 1 1lgr
HISJ 1 1hsl MYG 1 1mbi
PLMN 1 2pk4 PRTA 2 4sga 5sga
ENO1 3 1ebg 5enl 6enl ARAF 9 1apb 6abp 1abe 1abf 9abp 1bap 7abp
CPXA 4 5cpp 1phf 1phg 2cpp 5abp 8abp
CAH2 16 1a42 1cil 1cim 1cin 1bn1 1bn3 1bn4 TRY1_TRY2 1 1bra

1bnm 1bnn 1bnq 1bnt 1bnu 1bnv 1bnw RETB 1 1rbp
1bcd 1am6 ADHE 2 1adb 1adf

LDH 1 2ldb CISY 3 2csc 3csc 1csc
CBPA 7 2ctc 8cpa 3cpa 6cpa 1cps 1cbx 7cpa DYR 5 1dhf 4dfr 7dfr 1dr1 1drf
HV20 1 2mcp ITHH 3 1dwb 1dwc 1dwd
NUC 2 1snc 2sns DGAL 1 2gbp
TTHY 1 1sta MALE 1 1mdq
POL 27 1hih 4hvp 1pro 1dif 2upj 5hvp 1hpv FLAV 1 3fx2

1hpx 8hvp 1hbv 4phv 1sbg 1hsg 1hvk EL1 4 7est 1ela 1elb 1elc
1hvr 1hvs 1hps 9hvp 1hos 1hte 1htf CONA 1 5cna
1htg 1hvi 1hvj 1hvl 1aaq 7hvp MISC 14 1dbb 1dbj 1dbk 1dbm 2dbl 1mcb 1mcf

RASH 1 5p21 1mch 1mcj 1mcs 1mfe 2cgr 3gap 4fab
SYY 1 4ts1

E(Qa) ) E0 + ∑
a

µa
/Qa +

1

2
∑

a

η̃aQa
2 + ... (1)
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class we further defined 554 types of quadruplet compositions based
on our definition of chemical atom types (cf. Table 2) without taking
into account their order in the quadruplet. For example, all
quadruplets with atom types C_L, C_R, S_L, and X_L were
assigned to the same [X_L, S_L, C_L, C_R] composition type.

5. Dataset Division into Training, Test, and Independent
Validation Sets.It is generally accepted that the internal validation
of the QSAR models built for the training set is sufficient to
establish their predictive power.60-69 However, our previous studies
as well as those conducted by other groups have demonstrated that
there exists no correlation between leave-one-out (LOO) cross-
validatedR2 (q2) for the training set and the correlation coefficient
R2 between the predicted and observed activities for the test set.44,70

Our group has advocated the importance of the external model
validation, which requires an independent set of compounds.45,46,71

We have developed a rational approach to dividing the dataset into
multiple training and test sets for internal and external validations,
respectively.45,71,72 As described below, we have extended our
validation requirements to require not only test sets, but also a
second external test set (an independent validation set) for the
additional validation.

The dataset of 264 complexes was divided into three subsets in
the beginning of the calculations. The first subset of 24 complexes
for independent validation was selected randomly. The remaining
240 complexes were divided into multiple chemically diverse
training and test sets with the algorithm based on sphere exclusion
(SE) developed in our group.45 SE is a general procedure that is
typically applied to databases of organic molecules characterized
by multiple descriptors of their chemical structures such that each
compound is represented as a point (or vector) in multidimensional
descriptor space. The goal of the SE method is to divide a dataset
(i.e., a collection of points in multidimensional chemometric space)
into two subsets (training and test set) using diversity sampling
procedure as follows. SE starts with the calculation of the distance
matrixD between representative points in the descriptor space. Let
Dmin and Dmax be the minimum and maximum elements ofD,
respectively.N probe sphere radii are defined by the following
formulas.Rmin ) R1 ) Dmin, Rmax ) RN ) Dmax/4, Ri ) R1 + (i -
1)(RN - R1)/(N - 1), wherei ) 2, ...,N - 1. Each probe sphere
radius corresponds to one division into the training and test set.

In this paper, each protein-ligand complex was characterized
with multiple ENTess descriptors as discussed in the first section
under Results below. The entire dataset was then treated as a
collection of points (each corresponding to an individual protein-
ligand complex) in the ENTess descriptor space. Thus, the SE
algorithm used in this study consisted of the following steps. (i)
Select randomly a point in the ENTess descriptor space. (ii) Include
it in the training set. (iii) Construct a probe sphere around this point.
(iv) Select points from this sphere and include them alternatively
into test and training sets. (v) Exclude all points within this sphere
from further consideration. (vi) If no more compounds are left, stop.

Otherwise, letm be the number of probe spheres constructed and
n be the number of remaining points. Letdij (i ) 1, ...,m; j ) 1,
..., n) be the distances between the remaining points and probe
sphere centers. Select a point corresponding to the lowestdij value
and go to step (ii). The random division was repeated three times
and the results are summarized in Table 3. The training sets were
used to build models and the test sets were used for validation.
The independent validation sets of 24 complexes were used for an
additional external validation.

6. k-Nearest Neighbor (kNN) QSBR with Variable Selection.
We have described this approach elsewhere73,74 and present here
only its brief overview.kNN QSAR is a stochastic variable selection
procedure where the model optimization is driven by simulated
annealing, as is illustrated in Figure 3 ThekNN procedure is aimed
at the development of the model with the highest leave-one-out
(LOO) cross-validated correlation coefficientR2 (q2) for the training
set.

where N and yj are the number of compounds and the average
observed activity of the training set, respectively, andyi andŷi are
the observed and predicted activities of theith compound, respec-
tively.

The procedure starts with the random selection of a predefined
number of descriptors from all descriptors. The activity of a
compoundyi excluded in the LOO cross-validation procedure is
predicted as the weighted average of activities of its nearest
neighbors according to the following formula:

wheredij are distances between theith compound and itsk nearest
neighbors (j ) 1, ...,k). The optimal number of nearest neighbors
that yields the highestq2 value is defined as part of the LOO cross-

Table 2. Atom Type Definitions

ligand atom types receptor atom types

O EN ) 3.4 O EN) 3.4
N EN ) 3.0 N EN) 3.0
C EN ) 2.5 C EN) 2.5
S EN) 2.4 S EN) 2.4
X P and halogens, EN) 2.0-2.4, 4.0
M metal and all other rare atom

types, EN) 0.6-1.6

Figure 2. Topological tetrahedral types: RLLL, formed by one
receptor atom and three ligand atoms; RRLL, formed by two receptor
atoms and two ligand atoms; RRRL, formed by three receptor atoms
and one ligand atom.

Table 3. 24 Randomly Selected Complexes in Three Experiments

experiment 1 experiment 2 experiment 3

188l.pdb 1aaq.pdb 1adf.pdb
1b0h.pdb 1b3l.pdb 1b3f.pdb
1b4h.pdb 1b4z.pdb 1b58.pdb
1b58.pdb 1dbm.pdb 1b5h.pdb
1cim.pdb 1dih.pdb 1cim.pdb
1dbb.pdb 1ebg.pdb 1ebg.pdb
1dbm.pdb 1epo.pdb 1fkf.pdb
1dif.pdb 1hos.pdb 1hte.pdb
1fbc.pdb 1hvj.pdb 1hvl.pdb
1fbf.pdb 1hvr.pdb 1jao.pdb
1hvs.pdb 1mmr.pdb 1phh.pdb
1lgr.pdb 1ppc.pdb 1ppc.pdb
1lyb.pdb 1pph.pdb 1pph.pdb
1mmr.pdb 1qka.pdb 1qka.pdb
1nnb.pdb 1qkb.pdb 1stp.pdb
1nsc.pdb 1rne.pdb 1tmn.pdb
1phg.pdb 1rus.pdb 1tnh.pdb
1tlc.pdb 1sbg.pdb 1tnk.pdb
1tnh.pdb 1stp.pdb 2dri.pdb
2upj.pdb 3fx2.pdb 2sns.pdb
2xim.pdb 3lpr.pdb 3cpa.pdb
5ldh.pdb 4dfr.pdb 4tln.pdb
7dfr.pdb 7abp.pdb 4tmn.pdb
9abp.pdb 7tln.pdb 5ldh.pdb

q2 ) 1 -

∑
i)1

N

(yi - ŷi)
2

∑
i)1

N

(yi - yj)2

(2)

ŷi )

∑
j)1

k

yj exp(-dij/∑
l)1

k

dil)

∑
j)1

k

exp(-dij/∑
l)1

k

dil)

(3)
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validation process as well. After each run of the LOO procedure,
a predefined number of descriptors are randomly changed, and the
new value ofq2 is defined. Ifq2(new) > q2(old), the new set of
descriptors is accepted. Ifq2(new) e q2(old), the new set of
descriptors is accepted with probabilityp ) exp[q2(new)- q2(old)]/
T and rejected with probability (1- p), whereT is a simulated
annealing “temperature” parameter. During the process,T is
decreasing until a predefined value, and when this value is achieved,
the optimization process is terminated.

7. Y-Randomization Test.The robustness of the models was
examined by comparing them to models obtained when using
randomized binding affinities of the training set (this procedure is
commonly referred to as theY-randomization test). Briefly, we
repeated the QSAR calculations with the randomized activities of
the training sets. We also compared theq2 values in the process of
the iteration procedure of the simulated annealing for actual and
random activities of training sets to see if there is any significant
difference. This randomization was repeated five times for each
splitting.

8. Model Validation and the Applicability Domain. QSBR
models were validated using test sets. They were considered as
acceptable if (i)q2 > 0.5 andR2 > 0.6, (ii) [R2 - R0

2]/R2 < 0.1
and 0.85< k <1.15 or [R2 - R′02]/R2 < 0.1 and 0.85< k′ < 1.15,
and (iii) |R0

2 - R′02| < 0.3,45 whereR0
2 andR′02 are the coefficients

of determination for regressions through the origin between
predicted vs observed, and observed vs predicted binding affinities,
respectively, andk andk′ are the corresponding slopes. The whole
QSBR model validation procedure, as is illustrated in Figure 4,
has been successfully used in our laboratory for many datasets and
is described in detail elsewhere.73-75

The binding affinities of the test set compounds were predicted
only if these compounds were within theapplicability domainof
the respective training set models. We define this domain45 as a
threshold distance in multidimensional descriptor space between a
test set compound and itsk nearest neighbors in the training set. If
the distance is beyond the threshold, the prediction is considered
unreliable. This threshold distance is calculated asD2

cutoff ) 〈D2
nn〉

+ Z × VAR, where〈D2
nn〉 is the squared mean distance between

each of the training set compound and itsk nearest neighbors, VAR
is the variance ofDnn, andZ is a user-defined parameter (the default
value is 0.5).

Training set models that passed our validation criteria (i)-(iii)
were used for the prediction of the independent validation set of
randomly selected compounds. For this exercise, we relied on the
consensus prediction, which consists of averaging the binding
affinities of each compound predicted by all acceptable models.37

9. QSBR Model Validation Using Computational Docking
Studies.The goal of this component of our studies was to query

the QSBR models with respect to their ability to differentiate
between native bound conformations of the ligands and their decoys.
In addition, we have also questioned whether QSBR models could
discriminate known binders from those molecules that are known
not to bind to the receptors, which is a rigorous test for any docking
method. We have randomly selected three complexes from the PDB.
They were human dihydrofolate reductase complexed with folate
(1DHF),76 orotidine 5′-phosphate decarboxylase complexed to
6-hydroxyuridine 5′-phosphate (BMP) (1DQX),77 and human P38
Map kinase in complex with BIRB796 (1KV2).78 The 1DHF
docking study was done with FlexX79 implemented in SYBYL,80

while 1DQX and 1KV2 poses were created using Autodock 3.0.81

In addition, aribinose was docked into dihydrofolate reductase using
FlexX79 and the enzyme coordinates from 1DHF to create an
unnatural complex, since it is known that aribinose does not bind
to dihydrofolate reductase. We have employed the default docking
parameters unless otherwise specified. The ligands were considered
flexible, and 50 conformations were docked and scored for each
ligand.

Results and Discussion

1. Atom Type Definition and ENTess Descriptor Genera-
tion. The nearest neighbor interacting atoms at the protein-
ligand interface were defined by the means of Delaunay
tessellation as described in Methods. The examples of interfacial
tetrahedra are shown in Figure 5 for the complex between HIV
protease and acetylpepstatin (PDB code 5HVP). Tetrahedra with
edges (i.e., interatomic distances) exceeding 8 Å were excluded.
We have applied this procedure to 517 protein-ligand com-
plexes in the training set as described in Methods and counted
the number of occurrences of each of the 554 atom quadruplet
types. If the number of times a particular type occurred was
higher than 50, we considered this quadruplet type significant.
Otherwise, this type was discarded, leading to the reduction in
the number of descriptors for the subsequent analysis. 132 types
of quadruplets were found to occur with sufficiently high
frequency (Figure 6). For each type of the tetrahedral composi-
tion, the EN values of the four composing atoms were added
up, and the resulting sums for all of the tetrahedra belonging to
this composition type were then added up again. The result of
these calculations represented the value of the descriptor (i.e.,
one of possible 132 descriptors) for the particular protein-ligand
complex (see Figure 7 for the illustration).

All 132 descriptors were initially calculated for the dataset
of 264 complexes with known binding constants. We found that
32 out of 132 descriptors had zero values for all 264 complexes,
so they were excluded from further consideration. The final
descriptor matrix included 264 rows for the protein-ligand
complexes and 100 columns for descriptors. We have applied
variable selectionk-nearest neighbor (kNN)74 to this matrix to
build models and establish correlations between binding affini-
ties and the ENTess descriptors as described below.

2. Building QSBR Models. To build validated QSBR
models, we have divided the dataset of 264 receptor-ligand
complexes with known binding constants into training, test, and
validation subsets multiple times. Three different subsets of the
entire dataset were generated initially by removing 24 randomly
selected complexes that constituted the independent validation
sets. In each case the remaining subset of 240 compounds was
divided into multiple training and test sets using the SE program
as described in Methods. For every division, the models were
built with the number of descriptors ranging between 10 and
60 with the increment of 5. Five models for each number of
descriptors were built. As a result, 55 training set models were
generated and then validated by predicting the binding constants
of the test sets. Due to the stochastic nature of the corresponding

Figure 3. Flowchart ofkNN-QSAR with variable selection.
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SE algorithm, the number of divisions was different for different
chemically diverse samples selected from the original dataset.
In the end, as many as 1155 models for 21 divisions of the first

sample of 240 complexes, 1045 models for 19 divisions of the
second sample, and 2310 models for 42 divisions of the third
sample were built and validated using variable selectionkNN.

Application of the acceptability criteria discussed in the
Methods section resulted in 354, 515, and 567 models for the
three samples described above withq2 > 0.50 andR2 > 0.60.
To evaluate the statistically significant predictive power of the
training set models, our test sets typically included no less than
15% of the dataset. As could be expected, due to the high
diversity of the dataset, theq2 andR2 were found to depend on
the division of the dataset. For example, we were unable to
obtain acceptable training set models for the 173/67 (training/
test set complexes) division but were able to generate highly
predictive models for the 167/73 division, where the best model
hadR2 as high as 0.71 (cf. model 28 in Table 4).

These results could be explained as follows. As a result of
the division, some complexes that are potential outliers are
included in the test set, which reduces theR2. On the contrary,
if these structures are included in the training set, the test set
R2 could be much higher than the training setq2. With the
criteria described above, an acceptable model was obtained with
the test set as large as 118 complexes, i.e., almost half of the
entire dataset, withq2 ) 0.53 andR2 ) 0.63 (cf. model 30 Table
4).

3. Prediction of the Independent Validation Sets.It should
be noted that the studies described above rely on the test sets
to select the acceptable training set models. So, strictly speaking,
the above procedure cannot be regarded as truly external
validation. On the contrary, successful prediction of the

Figure 4. Statistical data modeling and model validation workflow using thekNN variable selection approach.

Figure 5. Full atom-based protein-ligand interface tessellation for
5HVP. The magenta and red ribbons are two chains of the protein.
The acetylpepstatin ligand is in the spacefill display. Tetrahedra formed
by ligand and protein atoms are shown in yellow.

Figure 6. Frequency analysis of 554 composition types for the 517
protein-ligand complex dataset. All of the quadruplets on the left of
the dashed line were found more than 50 times.

Figure 7. Calculation of the ENTess descriptors. The same atom type
from receptor and ligand is treated differently. In the formulas,m is
the mth quadruplet composition type;n represents the number of
occurrences of this composition type in a given protein-ligand complex,
and j is the vertex index within the quadruplet.
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randomly selected independent validation set of 24 compounds
could be viewed as a realistic test of the models’ predictive
power. We now discuss the results of this test under different
prediction scenarios.

3.1. Prediction with the Best Individual Models.Table 4
presents the 10 best models for each experiment. Model 11 tops
the list withR2 as high as 0.83 andq2 of 0.65. Figure 8 shows
the data fitting of experimental and predicted binding affinities
for training and test sets. This model was built with 45
descriptors resulting from variable selection procedures, and
three nearest neighbors appeared to be optimal in the leave-
one-out (LOO) cross-validation.

Figure 9 shows the trajectory of the SA-driven optimization
of the q2 in developing the bestkNN models, and Figure 10
shows the relationship between the number of the descriptors
and theq2 for the training set with real vs randomized binding
affinities. The latter figure demonstrates that the models built
using true binding affinities for the training set afford signifi-
cantly higherq2 values as compared to the models generated
with the randomized binding energies.

To further validate the models, we made predictions for the
independent validation set of 24 randomly selected complexes
in three independent experiments (Table 3). For each individual
model, we have obtained fairly good correlation between the

actual and predicted binding affinity (Table 4), with the
exception of models 12 and 18, whereR2 fell below 0.60; all
other models hadR2 ranging from 0.60 to 0.80.

3.2. Predictions Using the Combined Training and Test
Sets.All predictions described in the previous section were made
using training sets only. Since the dataset of 240 complexes

Table 4. Best 10 Models for Each of the Three Dataset Divisionsa

models k q2 n R2 S2 slope R0
2 R45

2 R1
2 Rcomb

2 Rcons
2

Experiment 1
1 3 0.54 48 0.77 1.04 0.93 0.77 0.76 0.71 0.82 0.85
2 4 0.55 48 0.76 1.13 0.92 0.76 0.75 0.67 0.75
3 4 0.52 48 0.76 1.05 0.93 0.76 0.75 0.76 0.79
4 2 0.57 41 0.76 1.46 0.99 0.75 0.75 0.68 0.78
5 3 0.65 47 0.74 1.27 0.93 0.73 0.72 0.76 0.77
6 3 0.61 44 0.74 1.25 1.01 0.74 0.73 0.69 0.73
7 3 0.56 65 0.73 1.44 0.98 0.73 0.73 0.74 0.84
8 3 0.59 53 0.70 1.24 0.97 0.70 0.70 0.73 0.82
9 2 0.54 65 0.70 1.56 1.00 0.70 0.69 0.74 0.81

10 3 0.60 44 0.70 1.44 0.98 0.70 0.70 0.66 0.77

Experiment 2
11 3 0.65 40 0.83 0.89 0.95 0.83 0.83 0.77 0.74 0.77
12 3 0.66 40 0.83 0.92 0.97 0.83 0.83 0.57 0.55
13 3 0.66 41 0.82 0.99 0.95 0.82 0.82 0.68 0.72
14 3 0.63 47 0.81 0.92 0.97 0.80 0.80 0.6 0.64
15 2 0.58 51 0.80 0.96 1.02 0.80 0.78 0.64 0.72
16 3 0.63 51 0.83 0.82 1.05 0.82 0.78 0.61 0.62
17 3 0.60 47 0.80 0.95 0.98 0.79 0.79 0.72 0.77
18 3 0.63 47 0.80 0.95 0.97 0.79 0.79 0.58 0.64
19 3 0.57 44 0.76 1.19 0.98 0.76 0.76 0.8 0.83
20 2 0.64 50 0.78 0.93 1.00 0.77 0.76 0.62 0.77

Experiment 3
21 3 0.55 49 0.78 0.99 0.97 0.78 0.78 0.77 0.81 0.81
22 2 0.52 49 0.77 1.20 0.97 0.76 0.76 0.73 0.74
23 3 0.52 49 0.75 1.15 0.98 0.75 0.75 0.61 0.74
24 5 0.51 49 0.75 0.90 0.94 0.72 0.72 0.65 0.69
25 5 0.52 49 0.74 0.99 0.98 0.72 0.72 0.63 0.65
26 4 0.52 49 0.74 1.08 0.99 0.73 0.72 0.78 0.83
27 3 0.55 45 0.70 1.14 0.94 0.70 0.70 0.8 0.83
28 4 0.53 73 0.71 1.24 0.91 0.68 0.67 0.65 0.84
29 3 0.55 73 0.68 1.44 0.92 0.68 0.67 0.72 0.74
30 2 0.53 118 0.63 1.69 0.91 0.57 0.54 0.73 0.74

a k, number of the nearest neighbors;q2, cross validated correlation
coefficient for training sets;n, number of complexes in the test sets which
are within the applicability domain;R2, correlation coefficient for test sets;
S2, square of standard deviation between predicted and actual pKi; slope,
slope of the regression through the origin;R0

2, correlation coefficient for
test sets for the regression through the origin; R45

2, correlation coefficient
for test sets for the line which has slope 45°; R1

2, correlation coefficient
for the external set; Rcomb

2, correlation coefficient for the external set by
using the combination of training and test sets for predictions; Rcons

2,
correlation coefficient for the external set by consensus prediction with top
10 best models.

Figure 8. Predictive power of the best model (model 11, cf. Table 4):
gray open triangles, prediction for the 200 complexes of the training
set (q2 ) 0.65); black points, prediction for the 40 complexes of the
test set (R2 ) 0.83, rmsd) 1.06).

Figure 9. Trajectories forq2 of the best model (model 11) (solid black)
and the model with the lowestq2 (dashed gray). Trajectory of the model
with the highestq2 (shadowed gray) built with randomized binding
energies of the training set.

Figure 10. q2 vs the number of variables selected for thekNN QSAR
models. The results are for both actual (black) and random (gray)
datasets. Everyq2 is the average of 10 independent calculations.
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was divided into the training and test sets rationally and the
test set predictions were used to select acceptable models, it is
logical to employ the (re)combined set for the prediction of the
independent validation set. Thus, all 240 compounds of the
recombined dataset were used for the binding affinity prediction
of the independent validation set. We used the descriptors
selected and the optimal number of nearest neighbors obtained
by thekNN training set modeling. Perez et al.37 have reported
previously that using a similar approach improves the prediction
accuracy. Following this approach, we made predictions for 24
complexes with the 10 best models for each experiment (cf.
Table 3), and the results were significantly better than using
only the training set compounds. In addition toR2, root mean
squared deviation (rmsd) between predicted and observed
binding is also used to measure the accuracy of the prediction.
It is defined in the literature as15,48

where pKd
pred and pKd

obs are the predicted and observed
logarithmic binding affinity, respectively.N is the number of
complexes. Gibbs free energy of binding∆G is related to the
binding constant by

For instance, for the predictions made with model 7,R2

increased from 0.74 to 0.84 and rmsd decreased from 0.97 (5.5
kJ/mol) to 0.90 (5.1 kJ/mol) (cf. Table 4 and Figure 11). Since
we only use training set models that have both internal and
external high predictive power, every compound in the combined
set has nearest neighbors in the selected descriptor space with
approximately the same binding affinity. Obviously, combining
the training and test sets enriches the structural diversity of the
dataset used for prediction such that there is a greater chance
for every external compound of finding close nearest neighbors.
Furthermore, because we are using the applicability domain
threshold, the nearest neighbor relationships translate into similar
binding affinities, leading to high values of the externalR2.

3.3. Prediction with the Consensus Method.With the
consensus approach, the binding affinities for each of the 24
complexes in the independent validation set were predicted as
the average of the predicted binding affinities for each complex
based on individual models. The results, as shown in Table 4,
demonstrate that the consensus prediction is relatively stable
with R2 of 0.85, 0.77, and 0.81, respectively. Figure 11 shows,
that the consensus approach predicts more data with higher
correlation coefficient than any single model. Notably, as shown
in Table 5, model 12 has goodq2 (0.66) and very highR2 (0.83),
but theR2 for the prediction of the 24 external complexes is
below 0.60. This indicates that, even if bothq2 andR2 are very
high, it does not guarantee that the external predictive power
of an individual model is acceptable. On the contrary, the
consensus prediction usually yields acceptable predictive power.
This result is consistent with our previous observations.44

4. Analysis of Outliers.For each complex, if the difference
between the predicted and experimental binding affinities was
greater than three logarithmic units (i.e., pKd), we regarded the
complex as an outlier. On the basis of this definition, we have
observed several outliers in different experiments: 1STP82 in
experiment 1, 1PHG83 in experiment 2, and 1STP and 7TLN84

in experiment 3. 1STP is a very interesting complex that was
observed as an outlier by several groups working in the area of
scoring function development.17,21,79 The 1STP complex is
unique and our predicted affinity with different models under-
estimated the observed binding affinity by 4-7 pKd units. The
biotin-streptavidin complex has the highest known binding
constant82 and it is the only member of the SAV family (Table
1). Consequently, there are no analogues of this complex in
the training set. More importantly, Muegge and Martin21 pointed
out that streptavidin functions as tetramer; we only have
monomeric complex crystal structures available, whereas the
interaction with a second subunit increases the binding of biotin
by eight orders of magnitude.

1PHG83 was predicted to have binding affinity ca. three pKd

units lower than the experimental value (for instance, model 7
predicts the pKd value for this complex as 5.52, while the
observed binding affinity is 8.66). It is cytochrome P450cam

(camphor 5-monoxygenase) complexed with metyrapone, and
it contains the heme group as cofactor. The crystal structure
indicates that there is some interaction between the ligand and
the heme group that is not taken into account by our scoring
function.

7TLN84 is a metalloproteinase covalently bound to its ligand
INC (CH2CO(N-OH)Leu-OCH3). In addition, there are four
Ca2+ and one Zn2+ ions in the complex. In this case, the

Figure 11. Prediction of binding affinities for the external validation
test set (24 complexes) with different approaches (cf. Table 4):
asterisks, prediction with model 7 (Table 4),R2 ) 0.74 and rmsd)
0.97; black open triangles, prediction with model 7 using the whole
dataset of 240 complexes to selectk nearest neighbors for compounds
in the independent test set,R2 ) 0.84 and rmsd) 0.90; gray points,
consensus prediction by the top 10 best models using the whole dataset
of 240 complexes as the training set,R2 ) 0.85 and rmsd) 0.98.

rmsd) x(pKd
pred- pKd

obs)2

N - 1
(4)

∆G ) -RT ln Kd (5)

Table 5. Comparison of Predictive Power of ENTess Models vs that
Obtained with Alternative Scoring Functions

methods ref
training
set size

test
set
size

R2 for
test
sets

consensus
R2 for the

external set

BLEEP 22 351 90 0.53 N/A
PMF 21 697 77 0.61 N/A
SMoG96 19 120 46 0.42 N/A
SMoG2001 20 725 111 0.436 N/A
DT2002 a 319 67 0.71 N/A
SCORE 49 170 11 0.65 N/A
XSCORE 50 200 30 0.36 N/A
LUDI 15 82 12 0.45 N/A
VALIDATE 16 51 14 0.81 N/A
ChemScore 17 82 20 0.63 N/A
ENTess1 189-200 40-51 0.76-0.83 0.77
ENTess2 199-175 41-65 0.70-0.77 0.85
ENTess3 122-195 45-118 0.63-0.78 0.81

a Feng, J., unpublished data.
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concurrent binding of these ions could affect the prediction of
the binding affinity, as was observed with 1LYB.85 There are
too few metal-containing complexes in our training dataset, and
our approach may not accurately describe interactions mediated
by metal ions.

In addition to the outliers, several complexes were found to
be out of the applicability domain in our experiments. This
means they are too different from their respective training set
complexes in the 100-descriptor space. As described above, most
of them have metal ions that may induce large conformational
changes upon ligand binding. For example, 1EBG86 and 4TMN87

are metal complexes with four magnesium ions and four calcium
ions, respectively. Although we have descriptors for quadruplets
that contain metal atoms, the representation of the interaction
interface is probably insufficient to characterize their metal-
mediated large conformational change upon ligand binding. In
addition, ligands in these two complexes contain PO3 and PO2

groups, respectively, which are not frequent in the entire dataset.
Another example is 1FKF,88 which is an immunophilin-
immunosuppressant complex in which the protein conformation
changes insignificantly upon binding ascomocin (FK506), but
interestingly, the ligand FK506 undergoes a very large confor-
mational change when it binds. FK506 is an antibiotic with a
very large molecular weight (804 Da). The drug’s association
with the protein involves five hydrogen bonds; the protein
hydrophobic binding pocket is lined with conserved aromatic
residues and contains an unusual carbonyl binding pocket.88 We
suppose that the training set model is incapable of describing
these unique interactions accurately. However, despite the small
number of outliers, we suggest that the ENTess descriptors as
applied in kNN QSBR calculations in general led to highly
predictive models.

5. Robustness of the Models.As described in Methods, to
evaluate the model robustness, we have performed the Y-
randomization test. As shown in Figures 9 and 10,q2 values
for models built with real activities of the training set were
always much higher than for those built with randomized
activities. To exclude the possibility of chance correlations and
overfitting, theY-randomization test was repeated five times
for each splitting. The highestq2 for the random datasets was
0.14, while the lowestq2 for the real datasets was 0.51. In
general, if the relationships between binding affinities and
descriptors are not random, the models built with randomized
affinities of the training sets complexes must have no predictive
ability. Indeed, no predictive model built with randomized
training set data was found.

6. Comparison with Other Scoring Functions.Our results
were compared with those obtained earlier using both knowledge-

based and empirical scoring functions, as shown in Table 5.
Since there are no standard training and test sets used by
different groups, the direct comparison is impossible. Compared
to SMoG96,19 our training sets were a little bigger, but our
prediction accuracy was much better, even for a much bigger
test set (118 complexes). As compared to other published results,
we had test sets of comparable size and much smaller training
sets, but nevertheless, our correlation coefficients are much
higher. Importantly, we have demonstrated that our method
afforded high predictive power for an external structurally
diverse dataset. The alternative empirical scoring functions
demonstrated comparable results with relatively smaller training
sets (except SCORE and XSCORE48,49), but the test sets are
also small, which highly influences the value ofR2. In summary,
our models were rigorously validated using test sets, using the
additional external prediction set of 24 compounds to simulate
the real application of the models, and by performingY-
randomization tests. The results demonstrate the high prediction
power of our models and the applicability of our novel
geometrical chemical descriptors to binding affinity prediction.

7. Validation Using Docking Studies.For each docking case,
the resulting poses were grouped into different bins based on
their rmsd against the crystal structure (for 1DQX, 1DHF, and
1KV2) or the lowest energy binding conformation (for the
unnatural aribinose-DHFR complex); the bin width was 0.5
Å. The poses with rmsd above 8 Å were not considered. This
process led to six nonempty bins for both 1DHF (actual pKd )
7.4)76 and 1KV2 (actual pKd ) 10.0)78 and four nonempty bins
for both 1DQX (actual pKd ) 11.05)89 and the DHFR-aribinose
unnatural complex. The poses with the lowest estimated binding
free energy were selected as representatives of each bin. Thus,
we have obtained six poses for 1DHF and 1KV2 and four poses
for 1DQX and DHFR-aribinose complexes.

The pKd resulting from consensus prediction using the best
30 ENTess models were used to rank the aforementioned poses,
and the results are shown in Table 6. These results demonstrate
that, in all cases, ENTess predictions could clearly differentiate
the native crystallographic bound conformation from the other
decoy poses. For instance, our results for 1DHF are consistent
with FlexX79 for the top-ranked poses: ENTess top 1 and 2
were ranked 1 and 4 by FlexX79 with 1.64 and 1.12 Å rmsd,
respectively. Both of them actually belong to the same binding
conformation and orientation mode. All of the poses ranked low
by FlexX were also ranked low by ENTess. The low binding
affinity (ca. 1 mM) predicted by ENTess corresponded to poses
with weak binding to the DHFR receptor. Similarly, ENTess
estimations were accurate for 1DQX and 1KV2: on the basis
of ENTess predictions, all ligand conformations with low rmsd

Table 6. Binding Affinity Prediction and the Ranking of Docked Poses Based on Their Predicted pKd
a

docking
poses

predicted
pKd by
ENTess

rmsd
(Å) ranking

docking
poses

predicted
pKd by
ENTess

rmsd
(Å) ranking

1dqx.pdb 10.694 0 native abp_1dhf_1.pdb 2.687 0 lowest
energy

1dqx_2.pdb 7.696 2.06 1 abp_1dhf_22.pdb 2.687 0.70 1
1dqx_6.pdb 7.685 1.93 2 abp_1dhf_13.pdb 2.686 1.56 2
1dqx_1.pdb 4.813 3.32 3 abp_1dhf_41.pdb 2.685 4.37 3
1dqx_47.pdb 3.786 6.17 4 abp_1dhf_3.pdb 2.668 6.28 4
1dhf.pdb 7.760 0 native 1kv2.pdb 8.702 0 native
1dhf_1.pdb 6.678 1.64 1 1kv2_5.pdb 5.698 1.53 1
1dhf_4.pdb 5.246 1.12 2 1kv2_21.pdb 4.863 1.21 2
1dhf_49.pdb 4.111 2.18 3 1kv2_46.pdb 3.741 7.61 3
1dhf_31.pdb 4.110 2.97 4 1kv2_34.pdb 3.702 4.55 4
1dhf_26.pdb 3.839 7.78 5 1kv2_13.pdb 3.699 2.73 5
1dhf_8.pdb 3.637 6.31 6 1kv2_40.pdb 3.613 6.04 6

a The numbers after the pdb codes are the rankings in the original docking methods.

NoVel Geometrical Chemical Descriptors for QSBR Journal of Medicinal Chemistry, 2006, Vol. 49, No. 92721



are strong binders, while the low-ranked poses are decoys. Most
interestingly, aribinose was successfully docked into the DHFR
binding pocket using FlexX,79 while we knew that the binding
did not happen at all. Probably this is the problem of many if
not all existing docking programs. In contrast, ENTess suggests
that all of the docked poses have very low binding affinity
(lower than 1 mM). This observation suggests that binding
affinity estimates using ENTess for poses generated with
available docking programs can be used to eliminate false
positives.

8. Chemical Properties of Descriptors Implicated in
Significant QSBR Models.QSBR models generated with the
variable selectionkNN method can be characterized not only
by their statistical characteristics but also analyzed in terms of
ENTess descriptors that best models are built with. To this end,
we have calculated the frequency of occurrence of those selected
descriptors found in the 30 best models used for the prediction
of external test sets. Table 7 shows the most frequently occurring
descriptor types. They demonstrate that frequent quadruplet
compositions of atom types include purely hydrophobic (such
as four carbon atom tetrahedra), hydrophilic (such as four
oxygens or nitrogens or mixed polar atom type quadruplet
compositions), as well as tetrahedra with mixed polar and
nonpolar atom composition (e.g., including two carbon and two
oxygen or nitrogen atoms). These results indicate that variable
selection kNN models tend to rely on chemically diverse
descriptor types that capture major intermolecular binding
interactions such as hydrophobic effect and hydrogen bonds.

9. The Importance of Electronegativity for ENTess
Descriptors. ENTess descriptors are very simple; since their
values are approximately proportional to the number of qua-
druplets with certain compositions, it may appear that significant

models could be generated without taking into account the
electronegativity values at all. To address the importance of EN,
we have repeated all calculations described above but using only
the numbers of occurrence of different tetrahedra as descriptors.
Interestingly, the statistical parameters for training and test set
models were comparable with those using the ENTess descrip-
tors, with q2 ranging from 0.5 to 0.7 andR2 from 0.6 to 0.8
(data not shown). However, the predictions of the external
validation set with these models were much less accurate than
using the ENTess descriptors (the consensus predictionR2 values
were always below 0.5). Furthermore, the acceptable training
set models, on average, constituted only about 15% of all of
the models built, which is far fewer than the 40% obtained when
using the ENTess descriptors.

In a separate experiment, we used atomic weights as the
property to generate descriptors in place of EN. Similarly, the
q2 and R2 for training/test set models, respectively, were
comparable with those generated with the ENTess descriptors.
However, although the prediction of the external validation set
gave better results than using the occurrence numbers, the
models were not as robust and stable as those built using EN
values (the bestR2 value for consensus prediction was 0.63 for
only one of the three external validation sets and much lower
for the other two validation sets; data not shown). We reason
that using electronegativity to calculate the ENTess descriptors
affords better models, since EN implicitly incorporates major
atomic properties that are important in intermolecular interac-
tions such as polarity, energy, and ability to form hydrogen bond.
Including other atomic parameters certainly could further
improve our method as we continue its development. In the
future studies, we plan to combine charges with EN to derive
more sophisticated and perhaps more robust descriptors. Nev-
ertheless, we believe that the simplicity of the approach proposed
in this paper and our demonstrated ability to generate reliable
QSBR models using ENTess descriptors makes these descriptors
attractive for a wide range of QSBR studies.

Conclusions

To the best of our knowledge, our studies represent the first
attempt to use electronegativity as a main parameter for the
definition of atom types and descriptors for protein-ligand
binding affinity prediction based on a QSBR approach. To
develop structure-based scoring function, we have combined
the atomic EN with the geometrical description of the protein-
ligand interface using Delaunay tessellation. Delaunay tessel-
lation is a unique way to represent the geometrical comple-
mentarity between receptors and ligands. Electronegativity has
been found to define important terms in the molecular energy
functions. On the basis of these two concepts, we have
developed novel geometrical chemical descriptors. The descrip-
tors have been applied in QSBR studies of binding energies
for a dataset of 264 protein-ligand complexes. QSBR models
were built with the variable selectionk-nearest neighbors (kNN)
algorithm based on simulated annealing.

Using the ENTess descriptors, we have built and validated
the QSBR models for protein-ligand binding affinity prediction.
Robust and accurate binding affinity predictions withR2 up to
0.83 for the test sets and 0.85 for the independent validation
set have been obtained (Table 4). Compared to the conventional
atom type definitions,16,20-22,43 our method is very simple yet
uses fundamental chemical and geometrical principles. Our
current analysis relies only on 10 atom types in total and a
relatively small number of descriptors, which can be considered
as an additional advantage of this methodology. Comparison

Table 7. Occurrence of 100 Tetrahedra Types in the Best 30 QSBR
Models

descriptor types
occur-
rence descriptor types

occur-
rence descriptor types

occur-
rence

CL-CL-CL-NR 27 CL-NR-NR-OR 16 CL-NL-OL-NR 12
CL-OR-OR-OR 24 CL-CL-CL-OR 15 CL-OL-OL-NR 12
CL-CL-NL-NR 22 CL-CL-OL-OR 15 CL-CL-OR-OR 12
CL-NL-OL-OR 22 CL-OL-OL-CR 15 OL-OL-NR-NR 12
CL-CL-NR-NR 22 CL-OL-OL-OR 15 CL-SR-CR-CR 12
CL-NL-CR-CR 22 NL-NL-OL-CR 15 NL-NR-OR-OR 12
OL-OL-CR-OR 22 OL-OL-OL-NR 15 XL-OL-OL-OR 11
OL-OL-OR-OR 22 CL-NL-CR-NR 15 CL-CL-NL-OR 11
NL-SR-CR-OR 22 CL-OL-CR-CR 15 NL-OL-OL-NR 11
NL-NL-CR-CR 21 NL-NL-NR-OR 15 OL-OL-OL-CR 11
XL-CR-CR-CR 21 NL-OL-CR-OR 15 SL-OL-CR-NR 11
CL-NL-NL-NR 20 OL-OL-CR-CR 15 CL-CL-SR-CR 11
XL-CR-CR-OR 20 OL-OL-NR-OR 15 CL-CL-CR-OR 11
CL-SR-CR-OR 20 CL-CR-NR-OR 15 CL-NL-NR-OR 11
OL-OL-OL-OR 19 XL-OL-OL-NR 14 CL-OL-OR-OR 11
CL-OL-NR-NR 18 NL-OL-OL-OR 14 NL-OL-OR-OR 11
NL-NL-OR-OR 18 SL-CL-CR-NR 14 CL-CR-CR-OR 11
NL-OL-CR-CR 18 CL-CL-CR-NR 14 CL-CL-OL-NR 10
XL-CR-NR-OR 18 CL-OL-SR-CR 14 SL-OL-CR-CR 10
SL-CR-CR-OR 18 CL-CR-CR-NR 14 CL-OL-CR-NR 10
CL-CL-NR-OR 17 CL-NR-OR-OR 14 CL-OL-CR-OR 10
CL-NL-CR-OR 17 NL-CR-NR-OR 14 NL-CR-OR-OR 10
CL-NL-OR-OR 17 NL-NR-NR-OR 14 CL-CL-CL-SR 9
SL-CR-CR-NR 17 XL-OL-OL-CR 13 CL-NL-OL-CR 9
CL-SR-CR-NR 17 CL-NL-NL-CR 13 NL-CR-NR-NR 9
NL-CR-CR-CR 17 CL-NL-NL-OR 13 CL-CR-CR-CR 8
NL-CR-CR-NR 17 CL-NL-NR-NR 13 NL-CR-CR-OR 8
SL-CL-CL-CR 16 CL-OL-NR-OR 13 CL-CL-CL-CR 7
SL-CL-OL-CR 16 NL-OL-NR-OR 13 CL-CL-OL-CR 7
NL-OL-OL-CR 16 OL-OL-CR-NR 13 SL-CL-CR-OR 7
CL-CL-CR-CR 16 SL-CR-CR-CR 13 SL-CL-CR-CR 6
NL-NL-CR-OR 16 CL-CR-NR-NR 13 NL-ML-CR-NR 6
NL-OL-CR-NR 16 CL-CR-OR-OR 13
XL-CR-CR-NR 16 CL-CL-NL-CR 12
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with other scoring functions has demonstrated that our approach
is accurate and efficient for the prediction of binding affinities
for diverse protein-ligand structures. Our QSBR models can
be used to predict binding free energy for protein-ligand
complexes resulting from experimental studies or docking
calculations. We expect that as additional data become avail-
able,90 the accuracy and the range of applicability of our
statistical scoring function will increase.
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